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THE ELECTRON BOLTZMANN EQUATION IN A PLASMA 

GENERATED BY FISSION PRODUCTS 

H. A. Hassan and Jerry E. Deese 
North Carolina State University 

Raleigh, North Carolina 

SUMMARY 

A Boltzmann equation formulation is presented for the determination of 

the electron distribution function in a plasma generated by fission fragments. 

The formulation takes into consideration ambipolar diffusion, elastic and in- 

elastic collisions, recombination and ionization and allows for the fact that 

the primary electrons are not monoenergetic. Calculations for He in a tube 

coated with fissionable material show that, over a wide pressure and neutron 

flux range, the distribution function is non-Maxwellian but the electrons are 

essentially thermal. Moreover, about a third of the energy of the primary 

electrons is transferred into the inelastic levels of He. This fraction of 

energy transfer is almost independent of pressure and neutron flux but in- 

creases sharply in the presence of a sustainer electric field. 

INTRODUCTION 

Recent experiments in CO, Xe-He and Ne-N2 mixtures l-3 have demonstrated 

direct nuclear pumping. At a time when the quest for high power lasers is at 

its peak, such a development is rather significant because it affords the 

means of uniform pumping of large volume high pressure gases. 

Although the inversion mechanisms were not discussed in any detail in 

Refs. 1-3, it is generally believed that both the high energy heavy particles 



and the low energy electrons play a role in population inversion. 495 An es- 

timate of the extent of the role played by the heavy particles and electrons 

in nuclear pumping requires, as a first step, the determination of their re- 

spective energy distributions. Using a monoenergetic source of high energy 

primary electrons, Wang and Miley5 calculated the electron distribution func- 

tion using Monte Carlo techniques. Later, Lo and Miley6 employed a simplified 

version of the Boltzmann equation, and the results compared favorably with the 

Monte Carlo calculation. In their study of electric discharges in gases, 

Thomas7 and Thomas and Thomas8 have shown that predictions based on the nu- 

merical solution of the appropriate Boltzmann equations are in good agreement 

with those obtained using Monte Carlo methods. Moreover, computations using 

the Boltzmann equation formulation were carried out at a considerable saving 

in computer time. Because of this and because of the role played by the 

electrons in nuclear pumped lasers, a Boltzmann equation formulation is pre- 

sented for the calculation of the electron distribution function. In this 

formulation, the effects of ambipolar diffusion, elastic and inelastic colli- 

sions, two and three body recombination and secondary ionization are taken 

into consideration. Moreover, because the primary electrons generated by the 

fission fragments are not monoenergetic', the present formulation allows for 

a source of primary electrons whose distribution is calculated by a procedure 

similar to that of Ref. 9. 

The resulting nonlinear differential-difference-integral equation is 

solved for a He plasma generated by fission fragments in the presence and ab- 

sence of externally applied electric fields over a wide range of pressure and 

neutron flux. The results show that the electrons are essentially thermal, 

but the distribution function is far from Maxwellian. 
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ANALYTICAL FORMULATION 

The experiments of Kefs. l-3 employed tubes coated with fissionable ma- 

terial. Under neutron bombardment, fission fragments emerge from the coating 

and enter the gas. The ensuing energy transfer results in ionization and ex- 

citation of the background gas. For the high pressures of interest, the 

plasmas generated by the fission fragments are slightly ionized. 5 Therefore, 

a Lorentz gas approximation will be employed. 

Letting the electron distribution function be expressed as: 

v.f. 
f = fo(v,xi,t)+ *, v2 = v.v 1 i' i = 1,2,3 (1) 

where v i is the velocity component, then the governing equations for f. and 

fi are given by 10,ll 

af 
$= V 

af. eEi a 
--A+.- 

3 axi 3mv2 av 1 

where 

+ f 1 vx2Qs(v/) 1 af 
f; - v2Qs(v) f. + (2) 

c 

af. af 
--IJo+ 

eEi af 

ax i 
-2 - Vfi 

m 

1 ,2 - mv = 1 
2 2 mv2 + 3 rnvi 

(2) 

(3) 

(4) 

V = 2nvN (1 - COSX) o(x,v) sinxdx Z v N Q, (5) 

and e is the electronic charge, m is the electronic mass, M is the mass of 

the heavy particle, T is the gas temperature, N is the gas number density, 
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Qm 
12 is the momentum transfer cross section, - mv 2 s is the excitation energy, Q, 

is the excitation cross section and (afo/at)c is the source term resulting 

from secondary ionization, recombination and production of electrons by fis- 

sion fragments. 

Steady state conditions are to be considered. Equation (3) can be solved 

then directly for fi 

af eE. af 
(6) 

Substituting equation (6) into equation (2) one finds 

+ eEi a -- 
3mv2 av 

+ (afo/at) = 0. 
C 

(7) 

In general Ei has values along and normal to the axis. The component 

along the axis, E 
X’ 

is that due to the applied electric field and is usually 

given. The component normal to the axis, EZ, is obtained from consideration 

of the diffusion process in the tube. 

Before one can attempt the solution of equation (7), one needs to specify 

EZ and (afo/at) . 
C 

In the presence of ambipolar diffusion EZ is determined 

from the requirement that the ion flux is equal to the electron flux in the 

normal direction. The ion or electron flux, ri s, is defined as 
, 

r i,s i,s v3 dv 
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where s refers to the ions or electrons. Using equation (6) with e replaced 

by -es, one obtains 

r 47T 4Tr esEi v3 afo s = -- 
I 

v4 afo,s dv 
---- i,s 3 vs ax. 3 m - -+ dv 

V 
1 S f S 

=- & (nsDs> - ns vs Ei 
i 

(9) 

where 

4Tr 1 
f 

4 
Ds=~~ F f. s dv 

S s ' 

and 

I-r 
4Tr es v3 afo s cm---- 
3 f 

- - dv 
S mn V av (10) 

s s S 

where D is the diffusion coefficient and 1-( is the mobility. The mobility is, 

by definition, a positive quantity; thus, 

47 e 
3 af 

v ue=--zymn -o dv 
v av 

e f 

and 

P i 

The requirement that rz i = lYz e gives 
, , 

EZ = - 
(De - Di> 1 dne _ y dne 

-- 
p,+v. n dz --=- e dz n 1 e 

and 

r dne z-D - 
De vi + Di ve 

ZYS A dz' DA = 
vi + ue - 

(11) 

(12) 

(13) 
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The equation governing ne follows from equation (7) by multiplying by 

4nv2 and integrating from 0 to infinity. Carrying out the indicated opera- 

tion, one obtains 

41T v4 eE. 
-j-v fodv - +-$ dv dv = 0 

or, using equations (9), (10) and (13) 

&(DA>)+4n 
af 

(-+ v2dv=0. at c (14) 

To carry out the integration in equation (14), one needs to determine 

(afo/wc. This term consists of a secondary ionization term, a production 

term resulting from the fission fragments and a recombination term. These 

processes are rather complex, making it necessary to employ crude approxima- 

tions for their representation. Thus, the procedure employed by Chan and 

Moody 12 for representing secondary ionization will be employed. Letting 

the contribution to (aFo/at)c resulting from secondary ionization can be 

written asI 

I G(E,E') F. dE' - Ai F. (16) 

where 

s=lmv 2 
2 , G(E,&') = 2 Ai D(E," - 'i)' 

(15) 

A+) = v Qi N = Qi N, 



1 
E0 - E ' OCESES-E 

D(E, E* - Ei> = i 
, (17) 

0 ,&2&'-E i 

E i is the ionization potential and Qi is the ionization cross section. Using 

(17) in (16), one finds 

co 

I 
G(&, E') FodE' = 2 

f 

Ai(EN) F. de' 

EN - E i 
E+E i 

O" Ai(< + Ed> F. (5 ' 'i) 
= 2 

I 5 
dE. 

& 

(18) 

To estimate the production term resulting from the fission fragments, a 

procedure similar to that employed by Guyot, Miley and Verdeyen' will be 

used. The fission fragments are assumed to fall into two groups: a light 

group with an average mass number of 96, an average initial charge of 20e and 

an average energy of 98 MEV; and a heavy group with an average mass number of 

140, an average initial charge of 22e and an average energy of 67 MEV. 

Consider the case of a tube coated with fissionable material and bom- 

barded with neutrons. For the case where the range of the particle in the 

coating is less or equal to the thickness of the coating, the number of heavy 

particles k born with energy E. k and having an energy E at location z per 
, 

unit surface per unit time and per unit energy is chosen as 
9 

S-r(n + 1) n 
Fkb’,E,Eo k) = 2 E 

'k 
, o,k 

'k ' - 1 _ ,,n+l 
k I 

for 0 C y C X 
g,k' 

OCESEmk 
, 

(19) 
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where 

E 
k=Gk. y=a-Z 

, 
(20) 

x 
g 

is the range of the particle in the gas, T is the thickness of the coating 

and S is the source rate of charged particles per unit volume and is given by 

S = Nt aB $~/2 

where Cp is the neutron flux, Nt is the number density of the target material 

and o B is the fission cross section. For fission fragments n = - l/2. 

For a slab model any quantity Q(y) at a distance y from one of the planes 

is given by 

2 
Q(Y) = c Qk(Y,Eo k)’ 

k=l , (21) 

The contribution from two plane parallel sources at a distance 2a apart gives 

Q tot = Q(Y) + Q(2a - y). (22) 

The number of electrons created per unit volume, per unit time, and per 

unit energy with a kinetic energy between E and E + dE at location z by the 

k th heavy particle is given by 

E 
o,k 

fk(Y,E) = f Fk(Y,E,Eo k , > Ki(E,&) dE 

where 

(23) 

Ki(E&) = N 1 Ns OS, OS = ' 
@Es) I 



AES 
=&+& 0 = 7Te4Z2 m/2 

i,s' 0 k' 'k = 'o,k&k (24) 

and N is the number of electrons in the s th 
S 

shell of the gas atom, E. is 
1,s 

the ionization potential, Z. k = 20 or 22 and m = 1 for fission fragments. 
, 

The expression for os follows from Ref. 13. The desired contribution to 

(aFowc is obtained from equations (22), (23) and (24) as 

g(Y,E> = F Cfk(y,E) + fk(2a - Y,E)l. (25) 
k=l 

Two and three body recombinations are considered. For a recombination 

reaction of the type 

A++e+A 

the contribution to (aFo/at) can be written as 
C 

@R 

v T nA+ F" = 'R n + A F. (26) 

where 7 is the recombination cross section and B R is a constant. For a 

three body recombination, the contribution to (aFo/at) will be chosen as 
C 

- 2 f 41 D(E, E’ - pi> FodE. + pk,o ‘(E - ‘i’ ‘0 (27) 

where 
. 

0; E < & i 
s = (28) 

l;&>& i 

and 

pk = %,o nt(E - Ei) 

9 



pk,o = (aR n,)/ 
J 

(E - EQ FodE 

L. 1 

(29) 

where cx R is the three body recombination coefficient. The reasoning that led 

to equation (27) is similar to that employed in deriving equation (16). The 

choices indicated in equations (16), (26) and (27) satisfy both particle and 

energy conservation. 

Using equations (16), (25), (26) and (27), the term 4~ 
f 

v2(afo/at)c dv 

can be written as 

4~ ' v2(af /at) dv = 01 n 
J 0 C 

where 

co 

a=s2L 
2 1 

Q,(5) 5 f,(5) d5; B = 
nem 

f 
gd&. 

E i 

(30) 

(31) 

Because g(z,&) does not depend on a simple way on position and because, for 

the pressure and dimensions under consideration, it is well approximated by 

its value at the axis, it is assumed when solving equation (14) that 

B(z) = B(O). (32) 

Although the above assumption simplifies the calculations, it is not required 

for carrying out the solution. The boundary conditions for equation (14) can 

be expressed as 

dne -=Oatz=O dz (33) 
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and, at the wall, a Schottky boundary condition is employed, i.e. 

n = 0 at z = a. e (34) 

With ne determined from equation (lb), EZ follows from equation (12). 

METHOD OF SOLUTION 

The function fo(v,z) = HO(&,z) is assumed to have the representation 

Hoc&,x> = 1 nj(x) hj(&) (35) 

where the n 
j 

's represent an orthogonal set. This set may be obtained from a 

suitable linear combination of functions $,, Q,, . . . 9, any r of which are 

linearly independent for arbitrary r, Ref. 14. By definition, the electron 

number density n,(z) is 

n,(z) = 4~r v3 fodv 

= 2~ [:I"' 1 nj(z) 7 E1'2 hjW d&. 

0 

(36) 

Thus, if one chooses 

3'2 ' c1'2 h (E) dE = 1; 2n J 0 

03 

&1'2 hj(&) d& = 0, j > 1 (37) 

then 

no(Z) = n,(z) (38) 

where n,(z) is determined from equation (14). The governing equation for hk 

is determined from equation (7) by substituting first for EZ and (afo/at>c and 

then multiplying by n,(z) and integrating from zero to a. The resulting 

11 



equation for hk depends on h . . . hk-1. This means that before one can deter- 
0 

mine h k' one has to determine ho, hl . . . hk-l' 

In this work, it is assumed that the solution may be approximated by the 

first term. Using the above procedure, one finds that ho is given by the 

following equation, 

dh 

A4 - (n/cf,) ho -(e Y/Ei)(n/\) -$ + (e Y/E~) $ (n ho/qm) 

-t- {(e y/cij2 + (e Ex a/ci) 2/04 1 y$, 

dh 
ho + (kT/Ei) + 

+ C In’ qsh’> ho(n’) - n s,(n) ho(n)) 

00 
+2 

I 
(5 + 1) q,K + 1) hoK + 1) y - n qi h o 

n 

+ A1 g(n) - A2 n l/2 ho + A3 n 1’2 S(n) ho(n) (n - 1) 

-2 5 112 
ho(5>d5 =O 

1 
(39) 

n+l 

where 

2 m 
x1 = 9 

8~rN Q,(O) E.' 
1 

%,o O3 
'3 = N Q,(O) , x4 = 

O4 

3a2 N2 Q:(O) 

12 



gm = Qm(d/Q,(O>, q 
S 

= Q,(&)/Q,(O), n = E/E. 1 (40) 

and 

1 1 

3 = I 
ne.dL;Io, o2 = 

I 
nz d</o 

0 0 

1 1 

a3 = nz d</o, o4 = (dne/dC)2/o 

0 0 

1 

CT = 
i 

nid<, 5= z/a. (41) 

0 

As may be seen from equations (14) and (30), the o's are not independent. 

Thus, multiplying equation (14) by ne and integrating between o and a, one 

finds 

DA -2a4+a+Ba 1 - B, o2 - ciR o3 = 0. 
a 

Equation (42) follows also from equation (39) by integrating with respect to 

E from 0 to infinity. 

Letting 

I dh 
G = X4 (n/qm) (e y/Ei) ho + {(e Y"i)2 + ce Ex "Ei)2'041 $ 

I 
, 

2m dh 

+MPnn 2 {ho + (kT/ei) $1 (43) 

it is seen that equation (39) can be expressed as two first order equations 

%=+A 
dn 4 + R(n) ho-Al g(n) 

- 1 n' q,(n'> ho(n') - 2 (5 + 1) qi(E + 1) ho(S + 1) F 

n 
13 



.__ ,._ .._.. --. .- -.-----. -.- 

f h3 n l/2 5 1’2 hoG3 de (44) 

and 

dhO (G/n) - t(X4/qJ(e v/ei> + (2dM) ‘em ~1 ho 
--L= 
dn (A4/\) 1 (e Y/&i) 2 + (e Ex a/Ei)2/04} + (2m/M) qm n ('T/&i) 

(45) 

where 

R(n) = ‘4 (n/q,) + n ’ qs(‘) + n qi + ‘2 ’ l/2 - x3 Tp2 (n - 1) S(n) . (46) 

Equations (44) and (45) can be integrated using a Runge-Kutta or a predictor- 

corrector method starting at some E = E max' Before one can start the integra- 

tion one has to determine 0.; 
J 

these quantities depend on n,(z) which is gov- 

erned by equations (14) and (30). Because some of the quantities appearing 

in equation (30), i.e. DA and ~1, depend on ho, while others, i.e. B, and aR, 

depend on Te, the electron temperature which, in turn, depends on h 0’ the 

problem under consideration is nonlinear and an iterative procedure is re- 

quired to determine the solution. 

As a result of equation (42) 

G = 0 at E = &max (47) 

thus, to start the integration, one needs to assume ~1, AR 
90' 'e' De and the 

value of ho at E = E max' For the assumed ~1, pe, De, and AR 
90' 

the value of 

ho at E = &max is determined from the requirement indicated by equation (37). 

Using the calculated ho(E) new values of De, u,, AR and a are calculated 
¶O 

from equations (lo), (ll), (29) and (31) and are used to recalculate 0.. The 
J 

above procedure is repeated until convergence is achieved. 

14 



As is seen from the above, the calculation of ho requires a rather 

lengthy iterative procedure. Unfortunately, the convergence of the above 

method becomes increasingly difficult as the electric field decreases and/or 

as the pressure increases. This is because the coefficients of the highest 

derivatives in equation (39) become rather small thus necessitating extremely 

small integration steps. Because of this, the method of composite expansions 15 

was used in integrating equation (39) when Ex was set equal to zero. 

In this method the function ho(')) is written as 

hO = ho(n;6) = $(n;6) + x(no;S> 

= y S”(Iv,(n) + x,(n,)] 
n=O 

= Q, + x0 (48) 

where 6 is the largest of the two parameters (2m/M) and (ey/ci)h4 and 

R 
‘10 = n/6 is the inner variable with R > 0 being determined according to the 

procedure outlined below. The function x(no;6> is negligible outside the in- 

ner region, i.e. when rl + ~0. 0 

The equations for $, are determined by setting 

hO = c 6n IJJ n (49) 

in equation (39) and equating equal powers of 6. When this is done JJJ, is de- 

termined from all terms in equation (39) that are not multipled by 6, i.e. 

$, = IC n’ q-l’> QoW)+ 2 f 
(5 + 1) qi(s+ 1) $,(5 + 1) $ 

n 

+ xlg - 2 X3 T?'~ 1 E1'2 $ 0 dS){v(q. + C q ) 1 S 
n+l 

15 



+ ?p2 (A2 - A3 S(n) (n-l>)FL. (50) 

The equations for &(n,) are determined by first transforming equation (39) 

from n to n 0 and choosing R so that the coefficient of the highest derivative 

does not depend on 6. This procedure was not used here; instead, equations 

(44) and (45) were integrated starting at r) = 0 using the condition G(0) = 0 

and an assumed value of ho(O). The quantity ho(O) was determined from the 

requirement that at some nm where Iho - $,I < 6m 

2~. 312 nm 
I27r (*I { P2 

I 
ho(n)dn + n1'2 $,(rl)drl) - 11 < 6 n (51) 

0 
nm 

where 6 m and gn are preselected small numbers. 

As a check on the accuracy of the integration procedure and in order to 

determine the manner in which the primary electrons dispose of their energy, 

an electron energy equation is derived. This equation is obtained by multi- 

plying equation (30) by n and integrating from zero to infinity. The result- 

ing equation can be written as 

(e Ez ~,/a,> f- I E gd& + (a,$) cxR &i = 

(8~ 04/a2 m2 oL) 

I 

i [i]1'2 (1 $'2 ho dE + e y 1 $'2 2 d,] 

2 
+ z e Y(D, - Y Ile) 

! 

+ + [$'2 1 v c3'2 [ho + kT z] dE 

+ 87r N c E 
m20 S f 

E Q, ho d& + 5 kTe B,(o,/ol) + cx Ei/oL. 

1 
(52) 
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The above equation shows that the energy received by the electrons from fis- 

sion fragments, electric field and three body recombination is equal to, re- 

spectively, the energy lost by diffusion, elastic collisions, inelastic col- 

lisions, two body recombination and secondary ionization. 

RESULTS AND DISCUSSION 

The solution of equation (39) is carried out for a He plasma. Before a 

solution can be obtained one needs to know the momentum transfer, excitation 

and ionization cross sections of He. The momentum transfer cross section up 

to an electron energy of 6 ev is taken from Crompton et al. 16 ; above 6 ev it 

is assumed that the collision frequency v is a constant equal to 2.4 x 10' 

-1 set , Ref. 12. All helium excited states with a principal quantum number of 

5 or less are included in the calculations and the excitation cross sections 

for these states are taken from Refs. 17-25. The ionization cross section is 

taken from Rapp and Englander-Golden. 26 

At the high pressures of interest, the recombination process in noble 

gases is complicated by the formation of molecular ions. The theory presented 

here allows for radiative and three body recombination. However, at high 

pressures the reactions 

+ + He + 2 He + He2 +.He (53) 

e + Hz 2 + He -f HE + 2 He (54) 

where * designates an excited state play a dominant role since the forward 

rate for the first reaction 27 is about 10 -31 cm6/sec at 300°K while the for- 

ward rate for the second reaction 28 is about 2 x LO -27 cm6/sec at 300°K. Be- 

cause of the rapid conversion of Hz to Hz 2 at high pressure it is seen from 

17 



the second reaction that an effective two body recombination coefficient can 

be defined whose approximate value is 

BR z 2 x 1O-27 nHe 3 cm /sec. (55) 

For reactions of the type indicated in equation (54), Biondi 29 suggested a 

forward rate coefficient of the form 

kf = 10-(26'1)(Te/300)-5'2 cm6/sec. (56) 

Because of the above uncertainties, the calculations presented here assume a 

value of fi -9 
R of 10 at a pressure of 100 Torr; a value which was employed in 

Ref. 5. At:other pressures 8, is scaled according to the estimate indicated 

in equation (55). 

The ion mobility is taken as 10.4 cm2/V set, which is appropriate for a 

He ion. 27,30 Because the ion mobility does not play a significant role in 

the present calculations, no attempt was made to allow for the presence of 

other He ions. 

The calculations were carried out for a coating of U3 O8 with the neutron 

flux ranging from 3.8 x 10 11 to 7.6 x 1Ol4 neutrons/cm2 set at a temperature 

of 300'K and pressures of 100 and 760 Torr. The range of parameters was cho- 

sen to ensure that the Lorentz gas approximation employed here is not violated. 

The spacing between the walls, i.e., 2a, is taken as 3.7 cm. 

A typical plot of the distribution function of the primary electrons, 

g(E), is shown in Fig. 1. The plot demonstrates that the energy spectrum of 

the primary electrons is far from monoenergetic. Figure 2 shows the effect 

of the neutron flux on the electron distribution function F 0 (s ee equation 
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(15)). Examination of equation (39) shows that at high energies 

F 0 Cc hl g(n) a 01 g(n) * (57) 

The distribution function of the primary electrons, g, is proportional to the 

neutron flux. On the other hand, conservation of particles, equation (42), 

is such that o L is approximately inversely proportional to the square root of 

the neutron flux; thus, F. increases with the neutron flux at high energies. 

In the low energy region, the distribution function approaches a Maxwellian 

at the gas temperature. 

The effect of pressure is discussed next. As a result of increased col- 

lisions, the high energy particles are depleted at a faster rate thus result- 

ing in a reduced distribution at higher pressures. Because F. vs E: is pre- 

sented on a log-log scale and because F is normalized, calculations of F at 0 0 

100 and 760 Torr show that the effect is small and, therefore, does not war- 

rant a separate plot. 

It is evident from Fig. 2 that the distribution function is not Maxwel- 

lian. However, calculation of the electron temperature, i.e. 

T 2 =- 
e 3k f 

& F. dc, (58) 

shows that the electrons are essentially thermal. Assuming a Maxwellian dis- 

tribution function at this temperature would result in a substantial reduction 

of both electron excitation and ionization. This suggests that assuming the 

distribution function to be Maxwellian at some temperature different from the 

gas temperature is not a good approximation, Ref. 4. 

The effect of an externally applied electric field is shown in Fig. 3. 

It is seen from the plot that the distribution function approaches a Druyvestyn 
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distribution at low energies. At high energies the distribution is similar 

to that for a zero electric field. 

Figure 4 shows the manner in which energy is transferred from the primary 

electrons. Over a fourth of the energy is transferred to the excited states 

and this fraction is essentially independent of the range of neutron flux and 

pressure considered here. Energy transfer from electrons in the presence of 

an electric field was also investigated. The results indicate that over 90X 

of the energy is transferred to the He excited states. Unfortunately, for the 

E/P considered, namely .l V/cm Torr, the energy received by the electrons from 

the electric field far outweighed the energy received from the fission frag- 

ments. In spite of this, the above clearly illustrates the beneficial effect 

of employing a sustainer electric field in conjunction with nuclear induced 

plasmas for the generation of high power lasers. 

Because the analyses of Refs. 5 and 6 employ monoenergetic primary elec- 

trons and do not employ the experimentally measured cross sections employed 

here, direct comparison with the present work is not possible. Our results 

are, however, in qualitative agreement with their results. Based on present 

and some earlier unpublished calculations, we feel that the usual characteri- 

zation of diffusion 6 , namely, ignoring the ambipolar part and using a cosine 

(or Bessel function) representation to approximate the spatial derivative of 

the distribution function, is not adequate for fission generated plasma (See 

equations (14) and (30)). 

In this work, the solution of the Boltzmann equation is approximated by 

the first term at the series solution indicated in equation (35). This ap- 

proximation implies that the electron temperature is constant throughout and 

thus is consistent with the assumption of constant gas temperature. This 
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explains the reason why energy losses by conduction are not included in Fig. 

3. Therefore, as long as the assumption of constant temperature is adequate, 

which is the case at high pressures, there is no need to carry the computa- 

tions beyond the first term of the assumed series. 

CONCLUDING REMARKS 

The formulation presented here for the calculation of the electron dis- 

tribution function in plasmas generated by fission fragments is quite general 

and may be used for any gas or gas mixture. Results based on this formula- 

tion for He show that a large fraction of the energy of the primary electrons 

is transferred into the excited states. Moreover, when such plasmas are sub- 

jected to a sustainer electric field, sharp increase in the excitation rates 

results. Therefore, it appears that the major contribution of fission frag- 

ments is to provide the means for generating plasmas at high pressures. These 

plasmas can, in turn, be employed in conjunction with sustainer electric 

fields to generate high power lasers. 
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Figure 2. Electron energy distribution at 100 Torr. 
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Figure 3. Effect of electric field on electron 
distribution function. 
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